ORIGINAL PAPER

Multiple loss-of-function 5-O-glucosyltransferase alleles revealed in Vitis vinifera, but not in other Vitis species

Yingzhen Yang • Joanne A. Labate • Zhenchang Liang • Peter Cousins • Bernard Prins • John E. Preece • Mallikarjuna Aradhya • Gan-Yuan Zhong

Received: 27 March 2014 / Accepted: 23 August 2014 / Published online: 11 September 2014 © Springer-Verlag Berlin Heidelberg (outside the USA) 2014

Abstract

Key message Wild and loss-of-function alleles of the *5-O-glucosyltransferase* gene responsible for synthesis of diglucoside anthocyanins in *Vitis* were characterized. The information aids marker development for tracking this gene in grape breeding.

Abstract Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-*O*-glucoside) and diglucoside (3, 5-di-*O*-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species *Vitis vinifera*. Biochemically 3-*O*-glucoside

Communicated by Reinhard Toepfer.

Electronic supplementary material The online version of this article (doi:10.1007/s00122-014-2388-6) contains supplementary material, which is available to authorized users.

Y. Yang · P. Cousins · G.-Y. Zhong (⊠) USDA-ARS Grape Genetics Research Unit, Geneva, NY 14456, USA e-mail: ganyuan.zhong@ars.usda.gov

J. A. Labate · G.-Y. Zhong USDA-ARS Plant Genetic Resources Unit, Geneva, NY 14456, USA

Z. Liang Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, People's Republic of China

Present Address: P. Cousins E. & J. Gallo Winery, Modesto, CA 95353, USA

B. Prins · J. E. Preece · M. Aradhya USDA National Clonal Germplasm Repository, UCD, One Shields Avenue, Davis, CA 95616-8683, USA anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.

Introduction

Grapes are widely cultivated for fresh fruits as well as for processed products such as wine, juice, raisins, and jam. Grape berries are rich in polyphenolic compounds providing many health and nutritional benefits to consumers. About 60–87 % of the total polyphenolics in colored grape berries are anthocyanins (Liang et al. 2011, 2012),

whose backbone is anthocyanidin. In grape, anthocyanidins can be stabilized by glycosylation at the 3 or 3 and 5 positions of the C ring to form 3-*O*-glucoside anthocyanin or 3,5-*O*-diglucoside anthocyanin, respectively. While glucose at the 3 position is added by UDP-glucose: flavonoid 3-*O*-glucosyltransferase (Ford et al. 1998), 5-*O*-glucosyltransferase is responsible for adding a glucose at the 5 position (Janvary et al. 2009).

Anthocyanins are the main contributors to wine color and they exist in both monomeric and polymeric forms by forming adducts with different chemicals in wine. Monoglucoside and diglucoside anthocyanins behave differently in wine chemistry due to their structural differences. Wines with monoglucoside anthocyanins were less color stable to heat and light than wines with diglucoside pigments (Kim et al. 2010; Robinson et al. 1966; Vanburen et al. 1968). While 5-O-glucoside in the diglucoside anthocyanin has dual effects on the equilibrium between color and colorless forms and stability against oxidation/heat/light (Bishop and Nagel 1984; Garcia-Viguera and Bridle 1999; Mazza and Brouillard 1987; Sims and Morris 1985), diglucoside anthocyanins are highly undesirable in wine maturation and aging chemistry. Studies on muscadine grape (V. rotundifo*lia*) wines and European red wines (mostly made from V. vinifera) provided support for the dual roles of the 5-O-glucoside in wine chemistry. Compared to wines made from V. vinifera var. Cabernet Sauvignon, wines made from muscadine grapes started with a better color, but they were very susceptible to browning and overall loss of color quality during processing and storage (Sims and Morris 1985). The fact that the phenolic profile of most muscadine wines was less complex compared to vinifera wines further suggested that the anthocyanins in muscadine wines were unable to form many complex chemicals such as those found in vinifera wines (Sims and Morris 1985, 1986). The different behaviors of monoglucoside and diglucoside anthocyanins in wine chemistry might contribute to the observation that wines made from hybrid grapes are often considered inferior to those made from V. vinifera of which most do not produce any diglucoside anthocyanins (Liang et al. 2011).

The contents of diglucoside anthocyanins in grape berries vary tremendously among and within different *Vitis* species. While all anthocyanins in the muscadine grapes are diglucosylated (Ballinger et al. 1973; Huang et al. 2009; Sandhu and Gu 2010; You et al. 2012), most cultivated *V. vinifera* and its wild progenitor, *V. vinifera* ssp. *sylvestris*, produce berries with no detectable diglucoside anthocyanins (Liang et al. 2011; Revilla et al. 2010). On the other hand, North American wild *Vitis* species such as *V. labrusca*, *V. rupestris* and *V. riparia* produce both monoglucoside and diglucoside anthocyanins (Liang et al. 2011; Mazza 1995). Some wild Asian *Vitis* species such as *V. amurensis* and *V. coignetiae*

contain much higher amounts of diglucoside anthocyanins (50-90 % of total anthocyanins) (De la Cruz et al. 2012; Liang et al. 2011; Mazza 1995; Zhao et al. 2010; Zhu et al. 2012). It is interesting to note that not all wild Vitis species contain high amounts of diglucoside anthocyanins. For example, diglucoside anthocyanins were not detectable in certain V. cinerea accessions (Anderson et al. 1970; De la Cruz et al. 2012). Many hybrid grapes between V. vinifera and North American wild Vitis species (e.g. V. labrusca and V. riparia) have been developed to improve V. vinifera cultivars for resistance to phylloxera and powdery mildew diseases. Depending on pedigrees and breeding histories, diglucoside anthocyanin contents in these hybrid grapes varied from 0 to 60 % of the total anthocyanins (Balík et al. 2013; De Rosso et al. 2012; Flamini and Tomasi 2000; Li et al. 2013; Robinson et al. 1966). For example, 'Chelois' (Seibel 10878) did not contain any detectable diglucoside anthocyanins while more than half of the anthocyanin contents in the hybrid 'Rosette' (Seibel 1000) were diglucosylated (Robinson et al. 1966). A recent study of ten hybrid grapes suggested that some of them did not contain detectable diglucoside anthocyanins (Balík et al. 2013). Because most V. vinifera do not produce diglucoside anthocyanins, absence of diglucoside anthocyanins could be used as a criterion for identifying purebred V. vinifera grapes (Picariello et al. 2012, 2014).

A causal correlation between the 5-O-glucosyltransferase (5GT) gene and diglucoside anthocyanin production was established in a mapping population between 'Regent' (producing diglucoside anthocyanin) and 'Lemberger' (not producing diglucoside anthocyanin). One 'Regent' 5GT allele encoded a truncated protein due to a premature stop codon and no diglucoside anthocyanins were produced in F1 plants carrying this 5GT allele. F1 plants with the other 'Regent' 5GT allele, which encoded a fulllength protein, produced diglucoside anthocyanins (Hausmann et al. 2009, 2010). The functional 5GT allele was named as 5GT-Cha and the 5GT allele with the premature stop codon was named as 5GT-Dia after the parents of 'Regent', a cross between the interspecific hybrid 'Chambourcin' and V. vinifera cv. 'Diana' (Janvary et al. 2009). Two reverse mutations were required to restore 5GT-Dia allele's 5-O-glucosyltransferase function, including elimination of the premature stop codon mutation and a Valine to Leucine transition at the amino acid sequence position 121(amino acid 110 in Fig. 1) located in the vicinity of a catalytic site (Janvary et al. 2009). The authors argued that the two mutations in 5GT-Dia offered an explanation as to why revertants for this allele have never been reported in breeding programs.

To determine whether other forms of 5GT alleles are present in V. vinifera and other Vitis species and to examine their relationships, we surveyed the coding sequence

5GT-W1 Ih5GT Gt5GT7 At5GT	MANPHPF MAKQF -MVGRGKGKGREF MATSVNGSHRRPF L	10 FLIITFPAQGH FLVITIGAQGH VLLVVFPAQGH YLLVTFPAQGH V S	20 HINPALELAKR HINPARRLAAR HISPALQLAFK HINPALQLANR V S	30 LIGVGA LIEAGGA IVAHSSIDL LIHHGA T	40 DVTFATTIH RVTLTVPIL TFLTSSSAV TVTYSTAVS	50 AKSRLVKNPTVI AYRRMFPSAAAI ASILIGLPPTAI AHRRMGEPPSTI N S I T A	(DGLRFS ELEPREEKDDO PALNFI KGLSFI SI	50 70 STFSDGQEEGVR GLLTYMPYSDGV AAFSQGNLHNDI AWFTDG-FDDGI AS	RGPNDLP 'EDGLDPAANPA DDDDDAKDYMH .KSFEDQKIYMS P . N .L Y S E	80 VFQRLASENL EFKRRIAESL TLCKHGSQSV ELKRCGSNAL RC P
5GT-W1 Ih5GT Gt5GT7 At5GT	90 SELIMAS RCIAAGF RDIIHSTKKGQGG RDIIKAN I N	AN GQGQGQGQGQGQGQGQGQGQGQGQGQGQGQGQGQGQGQ	100 NEGRPISCLIY NGRPITCIVY GQGHPITRILY ETEPITGVIY K VG N	110 SILIPGAAE ALLLSMAAA TTLLPWAAD SVLVPWVST A V W.	120 CLARSFNIPS VARDLGVPS VAREFRLPS VAREFHLPT CL . F	130 AFLWIQPATVLI VLFWIQSATSFJ VLLWTQPVTTFJ FLLWIEPATVLJ E *	140 DIYYYYFNGFO AVNYHYFAGGY LTFHYYFTGYE DIYYYYFN *	1 GDLI YDKLE EDAINKVF 	50 16 RSKSSDPSFSI 'SEAAADPSFLV NQQGTEDDSTI 'SYKHLFDVEPI G V	0 170 ELPGLPSLSR ELPGLPAFRR QLPRLPLLSS KLPKLPLITT
5GT-W1 Ih5GT Gt5GT7 At5GT	180 QDLPSFFVGSDQ- KDLPTLLTGPRPE RDLHSFMLPS GDLPSFLQPS GP. ILA L .I .	190 -NQENHALAAF GTFYSFLHTLY -NPFKGAINTF -KALPSALVTI D KP # Q	200 YQKHLEILEQE YGEVFETLRRE KEHLEALDAE REHIEALETE	ENPK VSAGEEKPR ETPPT SNPK KL	210 ALVNTFDAL VILNTFRAL ILVNSYDAL ILVNTFSAL V S	220 EPEALRA-VEKI EEDVVAGFEAS EEEALQAMIPK EHDALTS-VEKI D	230 LKLTA-VGPLV IDMVT-VGPLV YKTMG-IGPLV LKMIP-IGPLV V I #V	240 /PSGFSDGKD /PPSLIMTSP IPSSVFDTRETT /SSSEGKT I.SL A	250 ASDTPSGG EETATND CEVVSLVPDLA D Y TL	260 DLSDGARDYM LYEHDTSNYM QKSKDDCQWH LFKSSDEDYT * S C
5GT-W1 Ih5GT Gt5GT7 At5GT	270 EWLKSKPESTVVY EWLDCKEEGSVVY GWLNSKAEGSVIY KWLDSKLERSVIY HN	280 VSFGSISMFS- VSFGSYATLK- VSFGSHVKQS- ISLGTHADDLF MP	290 MQQMEEIARG EEEREEVKKG KAQTEEIAKG PEKHMEALTHG K* G S	300 LLESGRPFL LSASGRPYI LLASGHPFL VLATNRPFL # C	310 WVIRAKENG WAMAK WVITSNEEE WIVREKNPE L .	320 EENKEEDKLSC(GGSGDDGGGLG- EGDEIMEQNLVI EKKKNRFLELI KΔΔΔΔ I SE	330 QEELEKQGMLI EEIQEKGMMI RGS-DRG-LV LAQ T	340 IQWCSQMEVLSH /EWCEQARVLSH /PWCAQFQVLKH /GWCSQTAVLAH / V D	350 PSLGCFVTHCG RSVGCFVTHCG IPSVGCFMTHCG ICAVGCFVTHCG PC	360 WNSSIESLAS WNSVAEAMAC WNSTLESIAC WNSTLESLES
5GT-W1 Ih5GT Gt5GT7 At5GT	370 38 GVPLIAFPQWADQ GVPMVMLPQWTDQ GVPVVAFPQFADQ M NE	0 390 GTNTKLIKDVW VTNAKLAEEEW PTISKLIAHVW CTTAKLVEDTW P N EN *) 400 IKTGVRLMVNE IGVGVRAEA IKVGVRVNAAV IRIGVKVKVGE #AA # R I	41 EEIVTSDEL VAGEEL DGIVGQEVI EGDVDGEEI . M .GY I	.0 4 KRCLELVMG RRCLDVVMG KNCIESVMD RRCLEKVMS #*	20 GGEKG-QEMI GGEADDGGIVMI PDGIGRELI GGEEA-EEMI R I	430 RKNAKKWKILA RRRAKAWSEKA NENVRKFMSLO RENAEKWKAMA *EN T	440 4 AKEALKEGGSSF AREAAGDGGSSF SKKAAEEGGSSF AVDAAAEGGPSI Γ ΔΔΔΔ	50 46 IKNLKNFVDEVI IRNLAAFVVGGN INNFKAFLQDMT JLNLKGFVDEDE M	0 QGY:464 :463 GGTTTIN:504 :456 C R

Fig. 1 Distribution and alignment of observed amino acid changes in *Vitis* 5GT with deduced amino acid sequences of *5GT* genes from three other plant species. 5GT-W1: 5GT W1 allele observed in this study, which was identical to the 5GT-Cha allele reported by Janvary et al. (2009); Ih5GT: *Iris x hollandica* 5GT (BAD06874); Gt5GT7: *Gentiana triflora* 5GT (BAG32255); At5GT: *Arabidopsis thaliana* 5GT (NP_193146, AT4G14090). *Dark and light shading* indicate

variation of the 5GT gene in 70 V. vinifera ssp. vinif-

era cultivars, 52 V. vinifera ssp. sylvestris accessions, 23

identical and similar amino acids, respectively. *Dashes* represent alignment gaps among sequences. The *numbers* represent amino acid positions in 5GT-W1. Below the alignment: *letters* indicate amino acid substitutions, "*Asterisk*" indicates a stop codon, "*Triangle*" indicates an amino acid deletion, "*Hash*" indicates a frameshift, and "*Dot*" indicates a silent mutation

Materials and methods

Plant materials

hybrid grapes involving various Vitis species, and two to five accessions each of V. aestivalis, V. riparia, V. rupestris, V. labrusca, V. amurensis, V. cinerea and V. rotundifolia. Surprisingly, many different 5GT allelic forms of loss-of-function mutations were present in V. vinifera ssp. vinifera and ssp. sylvestris. These loss-of-function alleles, however, were not found in other Vitis species. We further analyzed the anthocyanin profiles of 27 V. vinifera cultivars representing various 5GT genotypes. While most V. vinifera cultivars do not have functional 5GT and produce no diglucoside anthocyanins, some exceptions exist. This work advances our understanding of the genetic and functional diversity of 5GT in the Vitis species, V. vinifera in particular, and provides insights into how 5GT has evolved within V. vinifera. It also provides the molecular basis for tracking various allelic forms of this critical wine quality gene in a grape breeding program for grape variety development.

The experimental material was obtained from either USDA-Agricultural Research Service (USDA-ARS) *Vitis* clonal repository in Davis, California (identified as DVIT) or USDA-ARS *Vitis* clonal repository in Geneva, New York (identified as GVIT) (Table 1). USDA *Vitis* repository in Davis, California conserves a collection of more than 1,200 *V. vinifera* ssp. *vinifera* cultivars. Many of these *V. vinifera* cultivars are genetically related (Myles et al. 2011). We selected 67 cultivars of *V. vinifera* from the Davis repository for this study on the basis of the work of Myles et al. (2011). Among them, cultivars with many first-degree relationships, such as 'Aswad' and 'Muscat of Alexandria' were selected. Representative wine grapes such as 'Chardonnay' and 'Pinot Noir' and common table grapes such as 'Thompson Seedless' and 'Husseine' were also selected.

Accession ID	Species	Cultivar	Origin	5GT genotyp)e	Content of diglucos	ide anthocyanins
				5GT-allele1	5GT-allele2	Diglucoside anthocyanins/total anthocyanins	Source of data
DVIT 1395	Aestivalis	Lincecumii	California, USA	W20	W21	>30 %	Liang et al. (2012)
DVIT 1585	Aestivalis	Aestivalis	Illinois, USA	W19	W22		
GVIT 1285	Amurensis		Asia	W5	W4	>50-91 %	De La Cruz et al.
GVIT 709	Amurensis		Asia	W3	W3		(2012), Liang et al. (2012), Mazza (1995), Zhao et al. (2010), Zhu et al. (2012)
GVIT 171	Cinerea	B 17	Illinois, USA	W23	W24	<15 %	Anderson et al.
GVIT 259	Cinerea	III 65	Illinois, USA	W23	W27		(1970), De La
GVIT 268	Cinerea	Resseguier 2	Texas, USA	W23	W25		Cruz et al. (2012) ,
GVIT 269	Cinerea	B27	Illinois, USA	W23	W26		Liang et al. (2012)
DVIT 1263	Hybrid	Aestivalis Yeager	France	A1	W23		
DVIT 3106 ^a	Hybrid	Regent	Germany	C1	W1	25.40 %	Balík et al. (2013)
GVIT 23	hybrid	Colobel (Seibel 8357)	France	A1	W36	9.00 %	De Rosso et al. (2012)
GVIT 35	Hybrid	Seyve-Villard 23.51	2France	A1	W34	55.50 %	De Rosso et al. (2012)
GVIT 41	Hybrid	Baco Noir (Baco 1)	France	Е	W13	36.5 %, 100 %	De Rosso et al. (2012), Robinson et al. (1966)
GVIT 42	Hybrid	Chelois (Seibel 10878)	France	A1	C2	0	De Rosso et al. (2012), Robinson et al. (1966)
GVIT 135	Hybrid	Vergennes	Vermont, USA	A1	W10		
GVIT 254	Hybrid	Isabella	USA	A1	W9	13 %	Flamini and Tomasi (2000)
GVIT 323	Hybrid	Seibel 8745	France	A1	W35	25 %	De Rosso et al. (2012)
GVIT 336	Hybrid	Seibel 5163	France	A1	W34	33.60 %	Liang et al. (2013)
GVIT 433	Hybrid	Wheeler	USA	W11	W19		
GVIT 437	Hybrid	Seibel 6339	France	A1	W13	59.90 %	Liang et al. (2013)
GVIT454	Hybrid	Seibel 7052	France	W34	W35	58.70 %	Liang et al. (2013)
GVIT 464	Hybrid	Seibel 5409	France	A1	A2	No anthocyanin ^b	Liang et al. (2013)
GVIT 468	Hybrid	Rosette (Seibel 1000)	France	F	W1	63.70 %	Robinson et al. (1966)
GVIT 480	Hybrid	Seibel 9280	France	A1	W15	0.67 %	Liang et al. (2013)
GVIT 496	Hybrid	Seibel 7162	France	A2	W34	46.70 %	Liang et al. (2013)
GVIT 514	Hybrid	Seibel A	France	W1	W34	55.10 %	Liang et al. (2013)
GVIT 522	Hybrid	Clinton	USA	W1	W9	25.58–36.7 %	De Rosso et al. (2012), Flamini and Tomasi (2000)
GVIT 1251	Hybrid	Kyoho ^c	Japan	A1/A1	W11/W19	57.50 %	Li et al. (2013)
GVIT 1334	Hybrid	Lutie	Tennessee, USA	W11	W19		
GVIT 1344	Hybrid	Galibert 238-35	France	A1	W19	3 %	De Rosso et al. (2012)
GVIT 1374	Hybrid	Shimek	British Columbia, Canada	A1	W10		
GVIT 1541	Hybrid	Alexander	New York, USA	A1	W9		

Table 1 Identities, sources, 5GT genotypes, and 3,5-di-O-glucoside anthocyanin content of the grape accessions included in the present study

Table 1 continued

Accession ID	Species	Cultivar	Origin	5GT genotyp	e	Content of diglucos	ide anthocyanins
				5GT-allele1	5GT-allele2	Diglucoside anthocyanins/total anthocyanins	Source of data
GVIT 229	Labrusca	Dunkel 1	New York, USA	W10	W10	~40 %	Liang et al. (2012)
GVIT 878	Labrusca	Rem NE 11	New Hampshire, USA	W11	W19		
GVIT 994	Labrusca	Rem NE 4	Massachusetts, USA	W11	W19		
GVIT 1009	Riparia	Rem NE 22	Massachusetts, USA	W11	W11	50-64 %	Liang et al. (2012)
GVIT 1324	Riparia	Zumbrunnen	Wisconsin, USA	W12	W23		
GVIT 773	Riparia	1F	Colorado, USA	W12	W12		
GVIT 894	Riparia	Rem 85-76	New Hampshire, USA	W1	W9		
DVIT 1689	Rotundifolia	Olmo (U62-56)	USA	W29	W30	~100 %	Ballinger et al.
DVIT 1690	Rotundifolia	Olmo (U62-61)	USA	W29	W32		(1973), Huang
DVIT 1692	Rotundifolia	Olmo (U66-39)	Florida, USA	W29	W33		et al. (2009), Sandhu and Gu
DVIT 1695	Rotundifolia	Olmo (U66-55)	Florida, USA	W29	W31		(2010), You et al.
DVIT 2186	Rotundifolia	Noble	Georgia, USA	W28	W29		(2012)
GVIT 180	Rupestris	B 38	Texas, USA	W8	W13	50-83 %	Liang et al. (2012),
GVIT 596	Rupestris		USA	W7	W6		Mazza (1995)
DVIT 2009	Sylvestris		France	A1	F	~0 %	Revilla et al. (2010)
DVIT 2012	Sylvestris	L57	France	A1	W17		
DVIT 2014	Sylvestris	L19	France	A1	A2		
DVIT 2426.5	Sylvestris		Tunisia	A2	C2		
DVIT 2426.11	Sylvestris		Tunisia	A1	W16		
DVIT 2426.27	Sylvestris		Tunisia	B2	W16		
DVIT 2426.41	Sylvestris		Tunisia	A1	B3		
DVIT 2426.77	Sylvestris		Tunisia	A1	W15		
DVIT 2440.1	Sylvestris	Ayedere	Turkmenistan	G	W14		
DVIT 2444.1	Sylvestris		Turkmenistan	A1	A1		
DVIT 2446.1	Sylvestris		Turkmenistan	A1	C4		
DVIT 2854	Sylvestris	Olmo	NA ^d	W2	W2		
DVIT 3348.26	Sylvestris		Georgia	A1	B1		
DVIT 3348.27	Sylvestris		Georgia	A1	B1		
DVIT 3349.04	Sylvestris		Georgia	A1	G		
DVIT 3349.16 ^e	Sylvestris		Georgia	A1	W1		
DVIT 3350.02 ^e	Sylvestris		Georgia	B1	W19		
DVIT 3350.22 ^e	Sylvestris		Georgia	B1	W1		
DVIT 3351.01	Sylvestris		Armenia	A1	W14		
DVIT 3351.28	Sylvestris		Armenia	A1	A1		
DVIT 3353.03	Sylvestris		Armenia	A1	B1		
DVIT 3353.35	Sylvestris		Armenia	A1	A1		
DVIT 3354.01	Sylvestris		Armenia	A1	D		
DVIT 3355.01	Sylvestris		Georgia	A1	A1		
DVIT 3355.06	Sylvestris		Georgia	A1	B1		
DVIT 3356.03	Sylvestris		Armenia	A1	A1		
DVIT 3356.08	Sylvestris		Armenia	A1	B1		
DVIT 3357.14	Sylvestris		Georgia	B1	B1		
DVIT 3357.16	Sylvestris		Georgia	A1	B1		

Table 1 continued

Accession ID	Species	Cultivar	Origin	5GT genoty	be	Content of diglucos	ide anthocyanins
				5GT-allele1	5GT-allele2	Diglucoside anthocyanins/total anthocyanins	Source of data
DVIT 3555.12	Sylvestris		Azerbaijan	A1	B1		_
DVIT 3556.19	Sylvestris		Azerbaijan	A1	A1		
DVIT 3556.23	Sylvestris		Azerbaijan	A1	A1		
DVIT 3557.32	Sylvestris		Azerbaijan	A1	A1		
DVIT 3557.33	Sylvestris		Azerbaijan	A1	A1		
DVIT 3603.19	Sylvestris		Azerbaijan	A1	A1		
DVIT 3603.25	Sylvestris		Azerbaijan	A1	W14		
DVIT 3604.05	Sylvestris		Azerbaijan	D	W14		
DVIT 3604.08	Sylvestris		Azerbaijan	A1	A1		
DVIT 3605.14	Sylvestris		Azerbaijan	A1	A1		
DVIT 3605.19	Sylvestris		Azerbaijan	A1	G		
DVIT 3607.02	Sylvestris		Azerbaijan	A1	A1		
DVIT 3607.42	Sylvestris		Azerbaijan	A1	A1		
DVIT 3608.12	Sylvestris		Azerbaijan	A1	B1		
DVIT 3608.17	Sylvestris		Azerbaijan	A1	A1		
DVIT 3609.08	Sylvestris		Azerbaijan	A1	A1		
DVIT 3609.13	Sylvestris		Azerbaijan	A1	B1		
DVIT 3612.23	Sylvestris		Azerbaijan	A1	A1		
DVIT 3612.28	Sylvestris		Azerbaijan	A1	B1		
DVIT 3614.19	Sylvestris		Azerbaijan	A1	A1		
DVIT 3614.24	Sylvestris		Azerbaijan	A1	A1		
DVIT 3615.28	Sylvestris		Azerbaijan	A1	D		
DVIT 3615.33	Sylvestris		Azerbaijan	A1	A1		
DVIT 353	Vinifera	Bhokari	India	B1	C5	No anthocyanin	
DVIT 371	Vinifera	Chaouch	Turkey	A1	W15	No anthocyanin	
DVIT 400	Vinifera	Eununi	Israel	A2	W16	Detectable ^f	This study
DVIT 402	Vinifera	Fahri	Afghanistan	C3	Е	No anthocyanin	
DVIT 421	Vinifera	Husseine	Afghanistan	A1	W16	No anthocyanin	
DVIT 427	Vinifera	Kali Sahebi	India	В3	C3	Not detectable	This study
DVIT 439	Vinifera	Kisumashi	Afghanistan	B1	C3	No anthocyanin	
DVIT 465	Vinifera	Muscat of Alex- andria	Egypt	A1	A1	No anthocyanin	
DVIT 480	Vinifera	Olivette Blanche	France/Tunisia	A1	B3	No anthocyanin	
DVIT 496	Vinifera	Queen of the Vineyard	Hungary	C3	C6	No anthocyanin	
DVIT 501	Vinifera	Rhazaki De Crete	Greece	A1	C3	No anthocyanin	
DVIT 535	Vinifera	Thompson Seed- less	Turkey	B1	C3	No anthocyanin	
DVIT 541	Vinifera	Turkish Grape	Turkey	C1	D	No anthocyanin	
DVIT 548	Vinifera	Vorosmarthy	Hungary	A1	A2	No anthocyanin	
DVIT 558	Vinifera	Sidezites Proimo	Greece	B3	W15	Detectable	Liang et al. (2011); This study
DVIT 562	Vinifera	Itonychi Mavro	Greece	A1	B3	Not detectable	This study
DVIT 563	Vinifera	Ajimi	Iraq	A1	W15	Detectable	This study
DVIT 565	Vinifera	Askary	Iran	C3	C3	No anthocyanin	
DVIT 569	Vinifera	Dais-el-anz	Iraq	W16	W16	No anthocyanin	
DVIT 580	Vinifera	Keshmesh	Iran	B1	C3	No anthocyanin	

Table 1 continued

2439

Accession ID	Species	Cultivar	Origin	5GT genotyp	pe	Content of diglucos	ide anthocyanins
				5GT-allele1	5GT-allele2	Diglucoside anthocyanins/total anthocyanins	Source of data
DVIT 582	Vinifera	Kreatza	Croatia	A1	B1	No anthocyanin	
DVIT 597	Vinifera	Salomani	Iraq	B1	C8	Not detectable	This study
DVIT 633	Vinifera	Aramon	France	A1	Е	Not detectable	This study
DVIT 671	Vinifera	Bonarda	Italy	A1	A2	Not detectable	This study
DVIT 675	Vinifera	Cabernet Franc	France	A1	A2	Not detectable	This study
DVIT 681	Vinifera	Carignane	Spain	A2	B1	Not detectable	This study
DVIT 706	Vinifera	Divromo	Greece	C9	W15	No anthocyanin	
DVIT 738	Vinifera	Gewürztraminer	Italy	A2	B1	Not detectable (ligh	t color)
DVIT 774	Vinifera	Katta Kurgan	Russia Federation	A1	C3	No anthocyanin	
DVIT 826	Vinifera	Merlot	France	A1	A1	Not detectable	This study
DVIT 829	Vinifera	Mezes	Austria	A1	W15	No anthocyanin	
DVIT 841	Vinifera	Olmo 39098	Portugal	A1	A1	No anthocyanin	
DVIT 883	Vinifera	Pardala	Greece	A1	C9	Not detectable	This study
DVIT 928	Vinifera	Red Veltliner	Germany	A1	A1	Not detectable	This study
DVIT 954	Vinifera	Sémillon	France	A2	C2	No anthocyanin	
DVIT 981	Vinifera	Thiakon	Greece	Е	Е	No anthocyanin	
DVIT 990	Vinifera	Touriga	Portugal	A1	A1	Not detectable	This study
DVIT 992	Vinifera	Trincadeiro	Portugal	A1	B1	No anthocyanin	2
DVIT 1021	Vinifera	Zalovitico	Greece	Е	W18	Detectable	This study
DVIT 1036	Vinifera	Kontocladi	Greece	C6	W15	No anthocyanin	2
DVIT 1066	Vinifera	Pinot Noir	France	A2	B1	Not detectable	This study
DVIT 1071	Vinifera	Prokupac	Serbia	C6	W18	Detectable	This study
DVIT 1119	Vinifera	Plavac Mali	Serbia/Montenegro	Al	Al	Not detectable	This study
DVIT 1123	Vinifera	Sauvignon Gris	France	A2	C2	No anthocyanin	
DVIT 1326	Vinifera	Black Kishmish	Russia Federation	C3	W16	Detectable	Liang et al. (2011); This study
DVIT 1332	Vinifera	Chardonnay	France	A1	A2	No anthocyanin	
DVIT 1342	Vinifera	Zinfandel	Croatia	A1	A2	Not detectable	This study
DVIT 1350	Vinifera	Cabernet Sauvi- gnon	France	A1	A2	Not detectable	Li et al. (2013); This study
DVIT 1982	Vinifera	Dabouki	Israel	A1	A1	No anthocyanin	
DVIT 2054	Vinifera	Asma	Russia Federation	A1	C7	Not detectable	This study
DVIT 2057	Vinifera	Bastardo	Portugal	B1	C2	Not detectable	This study
DVIT 2059	Vinifera	Ezerjo	Hungary	Е	W15	No anthocyanin	
DVIT 2080	Vinifera	Grassa De Cotnari	Romania	A1	Е	No anthocyanin	
DVIT 2083	Vinifera	Red Roumi	Egypt	A1	B3	Not detectable	This study
DVIT 2084	Vinifera	Khalili	Afghanistan	C3	C3	No anthocyanin	
DVIT 2085	Vinifera	Aswad	Yemen	A1	Е	NA	
DVIT 2086	Vinifera	Vranac	Serbia/Montenegro	A1	C6	Not detectable	This study
DVIT 2173	Vinifera	Oubeidy	Lebanon	A1	C9	No anthocyanin	
DVIT 2341	Vinifera	Trollinger	Germany	B1	C1	Not detectable	This study
DVIT 2635	Vinifera	Doradillo	Spain	A1	A1	No anthocyanin	2
DVIT 2636	Vinifera	Fayoumi	Egypt	A1	Е	No anthocyanin	
DVIT 2648	Vinifera	Perle de Csaba	Hungary	C6	W14	No anthocyanin	
DVIT 2654	Vinifera	Sultana Crimson	Turkey	B1	C6	Not detectable	Liang et al. (2011)
DVIT 2659	Vinifera	Tavriz	Serbia	A1	Е	No anthocyanin	/

Table 1 continued

Accession ID	Species	Cultivar	Origin	5GT genoty	be	Content of diglucos	ide anthocyanins
				5GT-allele1	5GT-allele2	Diglucoside anthocyanins/total anthocyanins	Source of data
DVIT 2913	Vinifera	Flame Tokay	Algeria	C3	D	Not detectable	This study
DVIT 3002	Vinifera	Chasselas Rouge	France	A2	A2	Not detectable	This study
DVIT 3077	Vinifera	Sabal Kanskoi	Russia	C3	D	NA	
GVIT 1022	Vinifera	Madeleine Syl- vaner	Germany/France?	A2	C1	No anthocyanin	
GVIT 1371	Vinifera	White Riesling	Germany	A2	Е	No anthocyanin	
GVIT 1434	Vinifera	Ehrenfelser	Germany	A1	A2	No anthocyanin	

^a 'Regent' was not included in this study but listed as a reference for its genotype and diglucoside anthocyanin content from literatures (Janvary et al. 2009; Balík et al. 2013)

^b The grape berries are white/green or non-colored

^c 'Kyoho' is a tetraploid grape containing two copies each of the alleles W and A1

^d Information is not available

^e These three *sylvestris* accessions were collected along a major road and a major river near a small city in Georgia, raising the possibility that they are interspecific hybrids; and their taxonomic identities are yet to be confirmed

f The diglucoside anthocyanin peaks were detected, but their relative amount were not quantified

Furthermore, cultivars without first-degree relatives such as 'Zalovitico' and 'Itonychi Mavro' were added to increase the chance of finding novel *5GT* alleles. In addition to *V. vinifera*, 52 accessions of *V. vinifera* ssp. *sylvestris*, the presumed wild progenitor of cultivated *vinifera* grapevines, and five accessions of *V. rotundifolia* and two accessions of *V. aestivalis* were sampled from the Davis repository. Two to four accessions of *V. riparia*, *V. rupestris*, *V. labrusca*, *V. cinerea* and *V. amurensis*, 23 accessions of various *Vitis* hybrids, and three accessions of *V. vinifera* cultivars were from the USDA-ARS *Vitis* clonal repository in Geneva, New York.

The *sylvestris* genomic DNA samples were extracted using a CTAB-based method (Doyle and Doyle 1987). All other genomic DNA samples were extracted using Qiagen DNeasy 96 Plant Kit (Qiagen, Valencia, CA, USA).

Genomic PCR, PCR cloning and sequencing of PCR products and plasmids

The grapevine 5GT gene has no introns. A pair of primers P1 and P2 (P1, 5'ctgctaca**ATG**GCGAATCCT CAC3', located in the junction of 5' UTR and the coding sequence; P2, 5'gcaaaccgtataccgctaatgattcagtac3', located in 3' UTR) were used to amplify the entire 1,398-bp 5GTcoding sequence by genomic polymerase chain reaction (PCR) (see Fig. 1S for primer locations on the 5GTcoding sequence). The PCR reaction consisted of 0.2 µl genomic DNA (~10 ng), 10 µl 5xPhusion HF buffer, 1 µl dNTP (10 mM each), 2 µl P1 (10 µM), 2 µl P2 (10 µM) and 0.5 µl Phusion high-fidelity polymerase (New England Biolabs, Ipswich, MA, USA) in 50 µl reaction. The PCR conditions included 60 s at 98 °C for initial denaturation, followed by 35-40 cycles of 98 °C for 10 s, 60 °C for 30 s and 72 °C for 45 s, and 5 min at 72 °C for final extension. The PCR products were cleaned using Agencourt AMPure XP magnetic beads (Beckman Coulter Genomics, Danvers, MA, USA). The purified PCR products were sequenced with Primer 3 (P3, 5'CCGAAAGCACTGGTAAACAC CTTTG3', forward primer approximately 620 bps downstream from the ATG codon) and Primer 4 (P4, 5'CTTG GACTTGAGCCATTCCATGTAGTC3', reverse primer approximately 800 bps from the ATG codon). When double peaks were observed over a long stretch of sequence in the chromatograms, the alleles in the samples were interpreted as being heterozygous for insertion/deletion (indel) polymorphisms. Additional sequencing was performed using P1, P2, P5 (5'TCTGATGGAAAAGATGCGTC3', forward primer approximately 720 bps downstream from the ATG codon) or P6 (5'GGCCAAAATTTTCCATTTCTTGGC3', reverse primer approximately 1,300 bps downstream from the ATG codon), depending on the locations of the encountered indels. PCR products were also cloned into a pCR8/GW/TOPO vector (Invitrogen, Carlsbad, CA) and the 5GT inserts were sequenced using the primers located in the pCR8/GW/TOPO vector.

5GT sequence analysis

The *5GT* chromatographic sequence data were analyzed using Sequencher software (Gene Codes Corporation, Ann Arbor, MI, USA). The *5GT-Cha* was used as the reference

sequence (Janvary et al. 2009). 5GT sequences acquired through cloning and plasmid sequencing were compared with the results of direct PCR sequencing to verify that two alleles from an individual sample contained all of the polymorphisms revealed by PCR sequencing. Most 5GT alleles were recovered by PCR cloning and plasmid sequencing. Some were determined by direct PCR sequencing, when their PCR sequencing profiles showed no allelic variation.

Analysis of diglucoside anthocyanin content

Contents of diglucoside anthocyanins were previously assayed and reported for many Vitis species and hybrids (Balík et al. 2013; Ballinger et al. 1973; De la Cruz et al. 2012; De Rosso et al. 2012; Flamini and Tomasi 2000; Huang et al. 2009; Li et al. 2013; Liang et al. 2012, 2013; Mazza 1995; Robinson et al. 1966; Sandhu and Gu 2010; You et al. 2012; Zhao et al. 2010). The relevant results were summarized and included in Table 1. Although the reported results from various studies were not directly comparable due to the differences in detection methods, physiological conditions of the harvested grape berries, and the growing environments, they should provide reasonable references for the relative amount of diglucoside anthocyanins produced and, particularly, for qualitative assessment of presence or absence of diglucoside anthocyanins in the Vitis cultivars and species reported.

In contrast, very limited analysis was carried out for V. vinifera due to the widely accepted assumption that cultivated V. vinifera do not produce diglucoside anthocyanins. In this study, we determined the HPLC profiles of diglucoside anthocyanins in the berries of 27 V. vinifera cultivars covering various combinations of the 5GT alleles (Table 1). Briefly, about 20 mature berries from each cultivar were sampled from vineyard and kept on wet ice before further processed. The berries were frozen and berry skins were peeled on dry ice, and then ground into powder in liquid nitrogen. Sample extraction and subsequent HPLC analysis followed the protocols as described by Liang et al. (2011). Because we were mainly interested in a qualitative assessment of presence or absence of diglucoside anthocyanins, only one bulk sample, with no biological duplicate, was analyzed for each cultivar. The identities of various diglucoside anthocyanin peaks in the V. vinifera samples were determined by using the HPLC profiles of berries from V. amurensis and 'Concord' grapes as references. Both V. amurensis and 'Concord' grapes contain many different diglucoside anthocyanins (Wu and Prior 2005; Zhao et al. 2010).

Haplotype networks

Haplotype networks were generated from aligned nucleotide sequences using TCS software (Templeton et al. 1992). These were used to illustrate mutational steps between alleles including multifurcations and/or reticulations. The software uses parsimony to minimize the number of convergent or parallel mutations while allowing for recombination. Two analyses were performed: (1) all sampled *V. vinifera* ssp. *vinifera* and *V. vinifera* ssp. *sylvestris* (26 alleles representing 244 sampled genes) and (2) all non-*Vinifera* wild species (27 alleles representing 44 sampled genes). To examine relationships among alleles predicted to be functional versus non-functional, including non-conservative amino acid changes, stop codons and frameshift mutations, were drawn on the haplotype networks based on amino acid translation of alignments.

Results

The grape *5GT* gene encodes a peptide of 464 amino acid residues with tandem double stop codons. Its coding region has 1,398 bps with no introns. This was consistent with the observation in a previous study in which two grape *5GT* alleles were identified (Janvary et al. 2009). Similarly, no intron was found in the *Arabidopsis 5GT* gene (At4g14090) (http://www.ncbi.nlm.nih.gov/gene?cmd=retrieveandlist_u ids=827046). *5GT* genes were also identified from several other plant species including *Perilla frutescens* and *Petunia hybrida*. However, the intron status of the *5GT* genes from these species was unknown because they were isolated as cDNA clones (Yamazaki et al. 1999, 2002).

A total of 54 grape 5GT alleles were discovered in this study (Tables 1, 2, Table 1S). To determine the relative functional importance and distribution patterns of allelic variations (mutations), we aligned the deduced amino acid sequences of 5GT genes from Arabidopsis thaliana (At5GT), Gentiana triflora (Gt5GT7), Iris x hollandica (Ih5GT), and Vitis riparia (5GT-W1 of this study) (Fig. 1). The grape 5GT-W1 of this study was identical to the 5GT-Cha allele previously reported (Janvary et al. 2009). Among 172 mutations found in this study, 47 were silent (Fig. 1; Table 1S). Although the mutations were scattered across the entire 5GT coding sequence (Fig. 1), there were apparently several mutation hotspots. For example, multiple mutations were detected in the 15-bp region from nucleotide positions 946 to 960 (amino acid positions 316-320) (Fig. 1; Table 1S). Two types of in-frame deletions were found in this region, including a 12-bp deletion specific to V. cinerea (corresponding amino acid changes noted as NKEE317-320 Δ : deletion (Δ) of 4 amino acids NKEE at amino acid positions 317-310) and a 3-bp deletion (E320 Δ) specific to V. rotundifolia and one V. vinifera allele (Table 2). Furthermore, three missense mutations were found in this region, including mutations at nucleotide sequence positions 946 specific to V. rotundifolia (E316K: amino acid change from E to K at the amino acid position 316), 950 specific to a *V. vinifera* allele (N317S) and 952 specific to *V. aestivalis* (K318E). Apparently, this region is variable for both amino acid composition and number of amino acid residues (Fig. 1). It is also interesting to note that at certain amino acid positions as many as three forms of mutational changes were found. For example, D76E, D76 N, and D76Y were respectively found in *V. amurensis*, *V. vinifera* and *V. rotundifolia* (Fig. 1; Table 1S).

5GT alleles in V. vinifera ssp. vinifera and V. vinifera ssp. sylvestris

We identified 26 5GT alleles from 70 vinifera cultivars and 52 sylvestris accessions (Tables 1, 2). Eighteen of them contained premature stop codons and/or frameshift mutations (Table 2, Table 1S) and they were likely nonfunctional. Indeed, 3,5-O-diglucoside anthocyanins were not detected in the cultivars containing homozygous or combinations of these non-functional alleles (Table 1). These loss-of-function 5GT alleles were classified into seven types (A, B, C, D, E, F and G) on the basis of their key mutational features (i.e., premature stop codons and/or frameshift mutations) (Table 2). A1, the most common 5GT allele (\sim 44 % or 107 out of 244 alleles) in both vinifera and sylvestris, contained one single base pair deletion at nucleotide position 901 resulting in a frameshift (G301#: a frameshift (#) replacing the amino acid G at the amino acid position 301) (Table 2, Table 1S). Allele A2 contained one additional 2-bp deletion at nucleotide positions 1,182-1,183 (T394#) in addition to the 1-bp deletion at position 901. However, A2 was much less frequent than A1 (about 8 %) (Tables 1, 2). The key feature for the B type of mutation was the deletion of one base pair at nucleotide position 700 (P234#). There were three alleles classified as B type (B1 to B3). One of them, B3, also contained a premature stop codon at position 407 (L136*: a stop codon (*) replacing L at the amino acid position 136). Nine alleles were assigned to C type (C1 to C9). Their key feature was the presence of a premature stop codon at nucleotide position 1,242 (C414*). The previously discovered nonfunctional 5GT-Dia allele (Hausmann et al. 2009, 2010; Janvary et al. 2009) belongs to this type and was referred as C1 in this study (Tables 1, 2). C1 was not a common 5GT allele and observed only in three vinifera samples in this study (~1 %) (Table 1). C1 was not found in sylvestris accessions surveyed in this study. While the C-type 5GT alleles were present in both vinifera and sylvestris, it seems that additional mutations have accumulated in vinifera cultivars. Among the nine C-type alleles, eight were found in vinifera, but only two in sylvestris (Table 2). For the D, E, F or G type, only one 5GT allele was identified in each. The D type contained a premature stop codon at nucleotide position 417 (Y139*) and a 7-bp deletion at nucleotide positions 1,203-1,209 (N401#). The E type contained a 1-bp deletion at nucleotide position 568 (L190#) and a premature stop codon at nucleotide position 1,175 (W392*). The F type contained a premature stop codon at nucleotide position 1,305 (W435*) and the G type contained a 68-bp insertion (sequence duplication) at nucleotide position 1,237 (R413#). The E type was identified only in *vinifera* while F and G types were recovered only in *sylvestris* (Tables 1, 2). Some of these 5GT alleles had additional mutations in conserved amino acid residues (Table 2, Table 1S).

Eight 5GT alleles with no frameshift or premature stop mutations (referred as W-type) (W1, W2, W14, W15, W16, W17, W18 and W19) were identified in vinifera and sylvestris in this study (Tables 1, 2). These alleles, with the exceptions of W2 and W17 for which berry samples were not available for analysis, were likely functional since cultivars containing one of these alleles produced detectable 3,5-O-diglucoside anthocyanins (Table 1). Seven of the eight W-type 5GT alleles, with the exception of W18, were found in sylvestris. In contrast, only four of them (W14, W15, W16 and W18) were found in vinifera. Among the 70 vinifera cultivars assayed, 14 of them contained at least one W-type 5GT allele (Table 1). Both W14 and W15 contained a 12-bp in-frame deletion at the nucleotide positions 1,325-1,336 (ALKE442-445 Δ) and a point mutation resulting in an amino acid substitution at the conserved amino acid residue 353 (F353C). Interestingly, W15 was confirmed to produce trace, but detectable amount of 3,5-O-diglucoside anthocyanins (e.g. DVIT 558 and DVIT 563, Table 1), suggesting that the 12-bp in-frame deletion did not knock out the function of the allele. W14 was found in the vinifera accession DVIT 2,648 (Table 1). This vinifera cultivar produces green/white berries, therefore it was not possible to determine whether or not W14 produces 3,5-O-diglucoside anthocyanins. Since W14 and W15 were very similar and W15 was functional, it is very likely that W14 was also functional. W16 and W17 contained mutations in three conserved amino acid residues, two of which were also present in the A, D and F types (Table 2). W16 was confirmed to possess some 5GT function (DVIT 1326, Table 1). W17 was found in a sylvestris accession (DVIT 2012) for which no berry samples were available for HPLC assay, therefore the functionality of W17 was not determined in this study. However, W17 was likely functional as it had similar mutations as W16. W18 was found only in vinifera (DVIT 1021 and DVIT 1071) and had missense mutations which were not located in highly conserved residues compared to W1 (Table 2, Table 1S). Some other point mutations in W18 were also present in the B, C and G types (Table 2). W18 was functional in producing detectable 3,5-O-diglucoside anthocyanin (DVIT 1021 and DVIT 1071, Table 1). Both W1 and W19 were found in sylvestris (DVIT 3350.22 and

Table	2 Key muti	ation sites and	d distribution of 5G7	T alleles in Vitis species											
Allele ^a	¹ Mutation	feature and s.	ites ^b		Distrib	ution amon	ig species								
	Frame shift	Stop codon	In-frame deletion	Non-conservative amino acid changes ^c	Vini- fera	Sylves- tris	Hybrid	Ripa- ria	Lab- rusca	Aesti- valis	Cinerea	Rotun- difolia	Amu- rensis	Rupes- tris	Total
<u>A1</u>	G301#			<u>K</u> 386 N, <u>V</u> 396A, P78L	43	64	16								123
<u>A2</u>	G301#,T3	394#		<u>K</u> 386 N, <u>V</u> 396A, P78L	17	7	2								21
<u>B1</u>	P234#			<u>E</u> 291G, <u>V</u> 396I	13	14									27
<u>B2</u>	P234#			<u>E</u> 291G, <u>V</u> 396I		1									1
<u>B3</u>	P234#	L136*		<u>E</u> 291G, <u>V</u> 396I	5	1									9
<u>C1</u>		C414*		<u>L</u> 110 V, V307L	ю										ю
<u>C</u>		C414*		V307L	ю	1	1								5
<u>C</u> 3		C414*		<u>L</u> 266H, V307L	15										15
<u>C4</u>		C414*		V307L		1									1
C		C414*		V307L, E343 V	1										1
<u>C6</u>		C414*		V307L, E343 V	9										9
<u>C7</u>		C414*,S2	256*,Q288*	E343 V	1										1
<u>C8</u>		C414*		V307L	1										1
<u>60</u>		C414*		V307L	б										ю
D	N401#	Y139*		<u>L</u> 174P, <u>K</u> 386 N, <u>V</u> 396A	б	ŝ									9
비	L190#	W392*	E320A		11		1								12
띡		W435*		<u>K</u> 386 N, <u>V</u> 396A		1	1								2
IJ	R413#			F304C, S349P		3									ю
W1						2	ю	1							9
<u>W2</u>						7									7
W3													2		2
W4													1		1
W5													1		1
9M														1	1
Μ														1	1
W8														1	1
6M							3	1							4
W10				D 409Y			2		2						4
W11				D 409Y			ю	2	2						٢
W12				<u>D</u> 173G, A439T				ю							ю
W13				<u>D</u> 173G, A439T			2							1	б
<u>W14</u>			ALKE442-445/	▲ E353C	1	4									5
<u>W15</u>			ALKE442-445/	▲ E353C, Q381E	٢	1	1								6

Table (2 continue	-													
Allele ^a	Mutation	feature and s	ites ^b		Distribu	tion amor	ng species								
	Frame shift	Stop codon	In-frame deletion	Non-conservative amino acid changes ^c	Vini- fera	Sylves- tris	Hybrid	Ripa- ria	Lab- rusca	Aesti- valis	Cinerea	Rotun- difolia	Amu- rensis	Rupes- tris	Total
W16				<u>D</u> 380 N, <u>K</u> 386 N, <u>V</u> 396A, A 208S	5	2									7
<u>W17</u>				<u>D</u> 380 N, <u>K</u> 386 N, <u>V</u> 396/ A208S, S 103 N	¥,	1									1
<u>W18</u>				A126E, V307L	2										2
W19				<u>G</u> 395A		1	4		2	1					8
W20				$\underline{\mathbf{G}}$ 395A						1					1
W21				$\underline{\mathbf{G}}$ 395A						1					1
W22				<u>G</u> 395A						1					1
W23			NKEE317-320Δ	$\mathbf{S}103\mathbf{G}, \mathbf{S}283\mathbf{P}, \mathbf{T}383\mathbf{P}$			1	1			4				9
W24			NKEE317-320A	$\mathbf{S}103\mathbf{G}, \mathbf{S}283\mathbf{P}, \mathbf{T}383\mathbf{P}$							1				1
W25			NKEE317-320∆	S 103G, S283P, T 383P, <u>1</u> 19 V							1				1
W26			NKEE317-320Δ	S 103G, S283P, T 383P, <u>1</u> 19 V							1				1
W27			NKEE317-320Δ	S103G, S283P, <u>T</u> 383P, <u>1</u> 19 V, <u>A</u> 15 V							1				1
W28			E320Δ	P78S, F 121L, K267 N, <u>1</u> 102 V, R 82C								1			1
W29			$E320\Delta$	P78S, F121L, K267 N								5			5
W30			E320Δ	P78S, F121L, K267 N, S125F								1			1
W31			E320Δ	P78S, F121L, K267 N, <u>1</u> 102 V								1			1
W32			E320Δ	P78S, F121L, K267 N, S125F								1			1
W33			E320Δ	P78S, F121L, K267 N, <u>1</u> 102 V								1			1
W34							5								5
W35							2								7
W36				<u>G</u> 395A			1								1
Total a	lleles				18	17	16	5	3	4	5	6	3	4	
^a The t ^b W1 a	underlined :	alleles were v	iniferalsylvestris-spec	cific and the W alleles which A change in the amino ac	ch were f	found in <i>v</i> i ence is ind	iniferal sylve licated by fe	estris were	t in bold	K 386 N 1	n which am	ino acid K	was renlac	ed by N at 1	the amino
acid po	sition 386.	"#" stands fo	r frameshift, "*" for s	stop codon, and " Δ " for in-	-frame de	eletion		0							
° Bold	and underl	ined bold lett	ers stand for similar o	or identical amino acid resid	dues, res	pectively,	in the 5GT	alignment	t in Fig. 1						

DVIT 3350.02, respectively), but not in *vinifera*. W1 was also found in *V. riparia* (GVIT 894) and hybrid grapes involving *V. riparia* (e.g. GVIT 468). Similarly, W19 was present in *V. labrusca*, *V. aestivalis* and hybrid grape GVIT 1344 (Table 1). It is possible that these *sylvestris* accessions might be hybrids between *V. vinifera* and wild *Vitis* species.

5GT alleles in non-V. vinifera Vitis species

A total of 27 *5GT* alleles were identified from 22 accessions of *V. aestivalis*, *V. amurensis*, *V. cinerea*, *V. labrusca*, *V. riparia*, *V. rotundifolia* and *V. rupestris* (Tables 1, 2). None of the *5GT* alleles from these *Vitis* species contained premature stop codon or frameshift mutations (Table 2, Table 1S). These alleles are likely functional and many of them indeed produce abundant 3,5-di-*O*-glucoside anthocyanins (Table 1). W1, identical to the *5GT-Cha* allele previously reported (Janvary et al. 2009), was recovered from a *V. riparia* accession (Tables 1, 2). This is consistent with the fact that the *5GT-Cha* allele was cloned from the grape hybrid 'Regent' which contains *V. riparia* in its pedigree (Eibach and Töpher 2003).

As expected, 5GT alleles from different Vitis species had their own unique features. All 5GT alleles from V. rotundifolia (W28 to W33) contained an in-frame 3-bp deletion at nucleotide positions 958–960 (E320 Δ). These alleles collectively contained 27 point mutations unique to V. rotundifolia (Table 1S). All the anthocyanins in V. rotundifolia berries were diglucosylated (Ballinger et al. 1973; Huang et al. 2009; Sandhu and Gu 2010; You et al. 2012). Apparently, the in-frame 3-bp deletion in the V. rotundifolia 5GT does not compromise the 5GT functionality in producing diglucoside anthocyanins. Three 5GT alleles (W3, W4 and W5) were identified from two V. amurensis accessions containing no missense mutations in conserved residues (Table 2, Table 1S). It is no surprise that the relative amount of diglucoside anthocyanins (>50-91 % of total anthocyanins) was very high in V. amurensis (Table 1) (De la Cruz et al. 2012; Liang et al. 2012; Mazza 1995; Zhao et al. 2010; Zhu et al. 2012). Four 5GT alleles, W6, W7, W8 and W13, were identified from two V. rupestris accessions. W6, W7, and W8 contained no missense mutations in conserved residues. W13 was very similar to W12, a common allele from V. riparia, and they contained mutations in conserved or semi-conserved residues (Table 2, Table 1S). In addition to W12, V. riparia had four other alleles including W1, W9, W11, and W23. W1 and W9 had no missense mutations in conserved residues, while the other two alleles did. The presence of some 5GT alleles with missense mutations in conserved residues in V. riparia and V. rupestris may compromise the function of these alleles, which in turn explains why only about 50 % of the anthocyanins were diglucosylated in these species (Table 1) (Liang et al. 2012; Mazza 1995). Four 5GT alleles (W19–W22) were found in V. aestivalis and they contained seven unique point mutations (Table 1S). Interestingly, W19 was also present in two of the three V. labrusca accessions (Tables 1, 2). In addition to W19, two other alleles, W10 and W11, were identified from V. labrusca. W10 and W11 shared a common missense mutation at nucleotide position 1,225 (D409Y) (Table 2, Table 1S). W11 was also found in one of the V. riparia accessions (GVIT 1009) (W11/W11) (Tables 1, 2). The diglucoside anthocyanin contents in V. aestivalis and V. labrusca were relatively low (30-40 % or more) compared with the other wild Vitis species (Liang et al. 2012). All six 5GT alleles from these two species (W10, W11, W19 to W22) contained missense mutations on conserved (nucleotide position 1,184, G395A) or semi-conserved (nucleotide position 1,225, D409Y) residues (Table 2). V. cinerea is an interesting exception among the wild Vitis species regarding the production of diglucoside anthocyanins. It produces much less diglucoside anthocyanins (<15 %) compared with other wild Vitis species (Table 2) (Anderson et al. 1970; De la Cruz et al. 2012; Liang et al. 2012). In fact, diglucoside anthocyanins were not detectable at all in one V. cinerea (Englem.) Millardet accession (De la Cruz et al. 2012). All four V. cinerea accessions recovered in this study (W23-W27) carried nine unique polymorphisms (Table 1S). Besides the three missense mutations at conserved or semi-conserved residues (nucleotide position 307, S103G; nucleotide position 847, S283P; and nucleotide position 1,147, T383P), they all contained an in-frame 12-bp deletion at nucleotide positions 949-960 (NKEE317- 320Δ) (Fig. 1). Apparently some of these mutations significantly compromised the production of diglucoside anthocyanins. It is interesting to note that W23 was also found in one of the V. riparia accessions (GVIT 1324), raising the question as to whether this V. riparia accession was actually a hybrid between V. riparia and V. cinerea.

5GT alleles in hybrid grapes

Twenty-three hybrid grapes were surveyed for their *5GT* genotypes, including eleven Seibel hybrid grapes and some other widely cultivated cultivars such as 'Isabella', 'Clinton', and 'Kyoho' (Table 1). Some of these hybrid grapes have very complex genetic backgrounds. For example, many Seibel hybrid grapes have *V. aestivalis*, *V. cinerea*, *V. labrusca*, *V. riparia*, *V. rupestris* and *V. vinifera* in their pedigrees (http://www.ars-grin.gov/cgi-bin/npgs/acc/display.pl?1001422).

Fifteen out of the 23 hybrid grapes each contained one *vinifera*-specific 5GT allele (A1, A2, C2, E, F, or W15) and one non-*vinifera* 5GT allele (Table 1). Most of these hybrids were reported to produce diglucoside anthocyanins (Table 1). Eleven different W-type 5GT alleles were

recovered, including W1, W9 to W11, W13, W15, W19, W23, and W34-W36. W34, W35 and W36 were unique to the Seibel hybrid grapes, but their parental sources could not be identified from the Vitis species investigated in this study. Interestingly, three of the hybrid grapes contained vinifera-specific 5GT alleles only. Specifically, 'Seibel 10878' contained A1 and C2, 'Seibel 5409' (with green/ white berries) contained A1 and A2, and 'Seibel 9280' contained A1 and W15. 'Seibel 10878' did not produce diglucoside anthocyanins while 'Seibel 9280' did, although in very small quantity (0.67 % of total anthocyanins), further confirming that the vinifera-specific W15 weakly conferred 5GT function (Table 1) (De Rosso et al. 2012; Liang et al. 2013; Robinson et al. 1966). Five other hybrid grapes, 'Seibel 7052' (W34/W35), 'Seibel A' (W1/W34), 'Clinton' (W1/W9), 'Lutie' (W11/W19) and 'Wheeler' (W11/ W19) contained only non-vinifera 5GT alleles. It was not unexpected that 'Clinton' contained two W-type 5GTs since it likely contains V. riparia and V. labrusca in its pedi-(http://www.ars-grin.gov/cgi-bin/npgs/acc/display. gree pl?1006882). Because Seibel grapes were often created from multiple crosses between various hybrid grapes, some progenies derived from such crosses could contain only vinifera or non-vinifera 5GT alleles. As expected, those hybrids carrying one or more W-type alleles produced diglucoside anthocyanins (Table 1).

It is worth noting that the tetraploid hybrid grape 'Kyoho' contained two W-type *5GT* alleles (W11 and W19) and two copies of A1 alleles based on the sequencing chromatograms of its genomic PCR products (data not shown) (Table 1). Both W11 and W19 are common alleles of *V. labrusca* (Table 1). 'Kyoho' is a tetraploid hybrid from the cross between cv. 'Ishihara-wase' and cv. 'Centennial'. These two parents were likely tetraploid mutants from *V. labruscana* cv. 'Campbell Early' and *V. vinifera* cv. 'Rozaki', respectively (Okamoto 2007). The *5GT* genotype of 'Kyoho' is consistent with the expectation that 'Kyoho' inherited both *5GT* alleles from each parent (Table 1).

5GT haplotype network

To further elucidate the possible evolutionary relationships among various 5GT alleles, two haplotype networks were constructed, one for the V. vinifera complex involving both sylvestris and vinifera (Fig. 2), and the other for non-vinifera Vitis species (Fig. 3). The 5GT haplotype network of sylvestris and vinifera showed that the most frequent allele A1 was shared by both subspecies (Fig. 2). There were many branches leading to less frequent alleles that were many mutational steps removed from A1. A striking pattern was that the majority of branches across the entire network involved stop codons and/or frameshift mutations, which likely resulted in generation of non-functional alleles. Only the four branches that led to alleles W14 through W19 did not involve stop codon or frameshift mutations, but each of these four branches included amino acid substitutions in conserved residues. No recombinational events were evident.

The haplotype network of wild *Vitis* species alleles showed that non-conservative amino acid changes and inframe deletions were distributed sparsely throughout most of the network (Fig. 3). *V. rotundifolia* alleles were distinct from other *Vitis* species alleles. Several wild species alleles were shared (W1, W11, W19, W23) or closely related (W12 and W13) between species. There was a single reticulation that involved alleles W8 in *V. rupestris* and W9 in *V. riparia*.

Discussion

V. vinifera is the most widely cultivated Vitis species and produces grapes with superior quality of fruits from which most high quality wines are made. Because V. vinifera is poorly adapted or tolerant to pests, temperature extremes, drought, and other forms of biotic and abiotic stresses, grape breeders address these issues by introgressing adaptive traits from wild Vitis species. However, these wild adaptive traits are often accompanied by poor fruit quality and low yield. For example, most of the wines produced from hybrid grapes, such as those involving the North American species V. labrusca, have a strong "foxy" flavor, which is viewed as inferior quality by many consumers. Undesirable biochemical properties such as "foxiness" in fruits and wines can be evaluated through taste, but more reliably they can be determined through biochemical analyses. However, molecular markers are favored these days as a method of choice for tracking the presence or absence of these compounds in a breeding line when the genes or genomic regions responsible for the synthesis of these compounds are known. The association of methyl anthranilate with "foxy" flavor in grape fruits and wines and the discovery of the anthraniloyl-CoA:methanol anthraniloyl transferase gene responsible for the synthesis of methyl anthranilate (Wang and De Luca 2005) have made it possible to develop and use molecular markers for tracking the "foxy" gene in a grape breeding program. Such a marker-assisted selection tool should also be feasible for tagging different 5GT alleles reported in this study, since the biochemical process of the 5GT gene regulating the synthesis of diglucoside anthocyanins has been recently elucidated (Janvary et al. 2009).

One critical requirement for developing effective molecular markers to track a gene of interest in a breeding program is the knowledge of the allelic forms of the gene and their associated functionalities or phenotypes. Two 5GT alleles, one functional (5GT-Cha) and the other

nonfunctional (5GT-Dia), were previously identified (Hausmann et al. 2010, 2009; Janvary et al. 2009). However, how representative these two 5GT alleles are in the Vitis species. V. vinifera in particular, is unknown. The present study identified 18 alleles with apparent loss-offunction mutations (premature stop codons and frameshift indels) in V. vinifera, including the previously reported nonfunctional 5GT-Dia allele (Janvary et al. 2009). In addition, 36 W-type Vitis 5GT alleles, including the previously discovered 5GT-Cha allele, were identified in this study. While additional functional and non-functional 5GT alleles could be identified from other Vitis materials which were not included in this study, we believe that most Vitis 5GT alleles, particularly those in V. vinifera, have likely been captured in this study. Discovery of these allelic forms and their associated sequence information in this study will provide the foundation for designing effective molecular markers to track these alleles in grape breeding programs.

A very high level of polymorphisms was observed in *Vitis 5GT.* Fifty-four *5GT* alleles collectively carrying 172 mutational variations were found in this study, on average with one mutation every 8 bps in the 5GT coding region. At some amino acid sites more than one mutant form was present. Within V. vinifera, a total of 82 mutations were found with an average of one mutation every 16 bps. Similar levels of polymorphisms (one mutation every 21 bps) were found within each of the two V. vinifera subspecies: vinifera (68 mutated sites) and sylvestris (67 mutated sites). These levels of polymorphism were much higher than the average nucleotide polymorphism reported in grape genome sequences (one SNP per 60 to 100bps) (Lijavetzky et al. 2007; Riahi et al. 2013; Velasco et al. 2007). The fact that the 5GT gene has no introns, but yet maintains such a high level of polymorphisms is very interesting. What is particularly intriguing was that many forms of mutations, including frameshift indels, premature stop codons, and point mutations, were involved in generating the diverse 5GT alleles. This highly polymorphic locus offers an excellent diagnostic tool for tracking the origins of 5GT alleles in a grape breeding program or in wine-making quality control processes. Indeed, in most cases, the 5GT allelic profiles of hybrid grapes clearly identified them as hybrid progeny between V. vinifera and a non-vinifera Vitis species, with one non-functional 5GT allele from V. vinifera and one functional W-type 5GT allele from a non-vinifera parent (Table 1). The utility of 5GT alleles as diagnostic markers was also clearly demonstrated for interpreting the genetic origin of the tetraploid grape hybrid 'Kyoho' (see "Results").

The wide presence of *5GT* alleles with apparent loss-offunction mutations in *V. vinifera* ssp. *vinifera* explains why most *vinifera* cultivars do not produce diglucoside anthocyanins. Among the 70 *vinifera* cultivars investigated, 56 carried only those apparent loss-of-function alleles and,

as expected, they had no detectable diglucoside anthocyanins. It was important to note that 14 of the 70 vinifera cultivars investigated in this study each carried one W-type 5GT allele. However, eight of these 14 cultivars produced green/white berries and therefore their ability to produce diglucoside anthocyanins could not be determined. The remaining six vinifera cultivars with red-colored berries contained W15, W16 or W18 alleles and produced some diglucoside anthocyanins. Knowing which vinifera cultivars carry W-type 5GT alleles in the vinifera germplasm pool is important, particularly when these accessions are involved in breeding. What is intriguing was the observation that some white grapes carry W-type 5GT alleles, although no diglucoside anthocyanins were produced due to lack of anthocyanins. It is expected that when such white grape germplasm are crossed with those red grapes which do not have functional 5GT alleles, progeny from the crosses could potentially produce unwanted diglucoside anthocyanins.

Our haplotype network analyses provided an opportunity to understand the evolutionary relationships among various 5GT alleles. It should be noted that the haplotype networks constructed in this study were used as phenetic representations, i.e., as illustrations of relatedness as estimated by mutations, rather than as phylogenetic reconstructions. The mode and tempo of evolution of this gene in Vitis is complicated by reticulation and convergent evolution. Genus-wide gene flow also circulates these mutations among different, at least, sympatric species adding to extensive homoplasy within and among lineages. For example, although allele G in sylvestris branched out from allele C9 in vinifera (Fig. 2), this did not imply that G directly evolved from C9. In fact, V. vinifera ssp. sylvestris was the progenitor of cultivated grape V. vinifera ssp. vinifera and it was not likely that allele G was derived from ssp. vinifera. At the same time, a common ancestor to the two subspecies is not known in the Caucasus where ssp. vinifera was historically domesticated. This pattern could represent gene flow between the two subspecies, incomplete lineage sorting or a sampling artifact. Similarly, because allele W12 was one mutational step from allele W13, this did not imply that the V. riparia allele evolved directly from the V. rupestris allele (Fig. 3). There is a possibility of reticulate evolution within the Series *Ripariae* to which these two species belong.

Homoplasious mutations were evident in both networks (not shown), an indication that these networks are single depictions of many different possible representations of distances among alleles. In *V. vinifera* the predominant pattern showed extensive loss-of-function mutations that were accumulated throughout the majority of branches. This pattern strongly contrasted with the non-*Vinifera* species network, in which none of the branches contained loss-offunction mutations and in which non-conservative amino

Fig. 2 Haplotype network depicting 26 5GT alleles found in V. vinifera ssp. vinifera and V. vinifera ssp. sylvestris, rooted by allele W1. Area of ellipse is proportional to sample size of an allele (total n = 244). Each branch between small nodes represents one mutational

step (SNP or indel). All non-highlighted branches lead to frameshift or STOP codon mutations (*red colored letters*). Non-conservative amino acid changes and large indels are shown. Description of the mutational changes follows the same format as in Table 2 (color figure online)

acid changes were relatively rare. V. vinifera ssp. vinifera and V. vinifera ssp. sylvestris shared many same or similar 5GT alleles, supporting the conclusions drawn from many previous studies that these two subspecies share close evolutionary relationships; a common assumption is that sylvestris represents the progenitor of vinifera (McGovern 2003; This et al. 2006). Sylvestris possessed two unique loss-of-function alleles (alleles F and G, Table 2) which were not detected in vinifera. This could be simply explained by the fact that vinifera captured only a portion of the sylvestris 5GT alleles during domestication from sylvestris, or that our survey of vinifera was not exhaustive. The fact that allele F was found in the hybrid grape 'Seibel 1000' which has *vinifera* in its pedigree, supported the latter explanation. Another possibility was that some of the unique alleles in sylvestris were newly generated after vinifera's domestication. Similarly, vinifera had a unique loss-of function allele (allele E) which was not found in sylvestris. While finite sample size could explain the failure to capture the missing vinifera allele in sylvestris, it is also possible that allele E was newly evolved in *vinifera*. The fact that *vinifera* has accumulated many new additional mutations superimposed on the loss-of-function allele resulting from a stop codon at nucleotide position 1242 (C414*) (alleles C1, C3, C5 to C9, Table 2) may provide further indication that the *5GT* gene has rapidly evolved independently in *vinifera* after its domestication.

By associating the allelic forms of 5GT with the presence or absence of diglucoside anthocyanins, we were able to offer some explanations for why diglucoside anthocyanins were produced in some *V. vinifera* cultivars, but not in others. Similarly, we revealed that, while all the wild *Vitis* accessions produce diglucoside anthocyanins, the relative amount of diglucosylated anthocyanins varied among species, suggesting that some W-type 5GT alleles exerted stronger effects than others and/or the genetic background played a role in producing diglucoside anthocyanins. Indeed, we observed that some 5GT alleles had much higher levels of gene expression than others (unpublished data), presumably due to mutations in the promoter regions or other relevant regulatory elements. This information will enable breeders to decide which W-type 5GT alleles should

Fig. 3 Haplotype network depicting 27 5GT alleles found in wild grape species, rooted by allele W1. Area of ellipse is proportional to sample size of an allele (total n = 44). Each branch between small

nodes represents one mutational step (SNP or indel). Non-conservative amino acid changes and large indels are shown. Description of the mutational changes follows the same format as in Table 2

be introduced and predict how much diglucoside anthocyanins might be produced when traits of interest from these wild Vitis species are incorporated into V. vinifera. The possibility of making such predictions was well demonstrated in the hybrid grapes investigated in this study. For example, 'Seibel 10878' and 'Seibel 1000' are two hybrid grapes well-known for their difference in producing diglucoside anthocyanins. 'Seibel 10878' mainly produced monoglucoside anthocyanins while 'Seibel 1000' produced abundant diglucoside anthocyanins (Robinson et al. 1966). Our study showed that 'Seibel 10878' contained two loss-of-function 5GT alleles (A1 and C2) while 'Seibel 1000' contained a W-type 5GT allele (W1) and an F allele (Tables 1, 2). The relative amount of diglucoside anthocyanins appeared to correlate well with the copy number of W-type 5GT alleles present in hybrid grapes. For example, the hybrid 'Regent', which has a hybrid background of V. vinifera, V. riparia and some other Vitis species, contained about half the amount of diglucoside anthocyanins relative to V. riparia accessions (25.4 % versus 50-64 %) (Balík et al. 2013). Similarly, the content of diglucoside anthocyanins in 'Isabella', which carried one copy of W-type 5GT allele (A1/W9), was about 13 % while it was 25-37 % in 'Clinton' which had two W-type 5GT alleles (W1/W9) (De Rosso et al. 2012). Another example was that the hybrid table grape 'Kyoho' produced similar amount of diglucoside anthocyanins as V. labrusca (Table 1) (Li et al. 2013; Liang et al. 2012). This might be explained by the fact that 'Kyoho' contained two copies of W-type 5GT alleles (W11 and W19), which enabled the hybrid to produce a similar amount of diglucoside anthocyanins as that in its wild parental species V. labrusca.

In conclusion, most V. vinifera cultivars carried only non-functional 5GT alleles and therefore did not produce diglucoside anthocyanins. Many of these non-functional alleles resulted from frameshift indels and premature stop codons. Several red-colored V. vinifera cultivars, including 'Sidezites Proimo' and 'Zalovitico', carried one W-type 5GT allele and produced detectable diglucoside anthocyanins. However, these genotypes were not widely represented in V. vinifera germplasm (Myles et al. 2011). Interestingly, several V. vinifera grapes with green/white berries also carried W-type 5GT alleles, but they did not produce diglucoside anthocyanins due to the lack of anthocyanins. The functional 5GT alleles from these cultivars can be effectively tracked by using allele-specific markers, should these cultivars be used in crosses in a grape breeding program. Similarly, we can also follow W-type 5GT alleles in a grape breeding program when wild Vitis germplasm is introgressed into V. vinifera. Furthermore, we can use the 5GT allele information of this study to develop a PCRbased diagnostic tool for predicting not only the presence of diglucoside anthocyanins, but also the origins of the contributing parent(s) in grape cultivars and their derived wines. Such a PCR-based tool will be much more sensitive and efficient than the current biochemical approaches, such as use of HPLC, for detecting the presence of diglucoside anthocyanins for wine quality control. In addition to the establishment of functional roles of various forms of 5GT alleles in producing diglucoside anthocyanins and molecular basis for development of molecular markers for tracking these alleles in a grape breeding program, this study also revealed the networks of how these alleles are related to each other in the *Vitis* genus. The observations of many forms of mutations and a high level of polymorphisms involved in the 5GT gene suggested that some *Vitis* genes can evolve rather rapidly.

Author contributions GYZ and YY conceived and designed the project; PC, BP, JP, MA and YY contributed materials; YY collected the sequencing data and, jointly with ZL, the HPLC data; YY, JAL and GYZ analyzed the data and drafted the paper; All authors read and approved the final submission.

Acknowledgments We wish to thank Andy Humiston of Department of Horticulture, Cornell University for providing his assistance in HPLC analysis of anthocyanins and Thomas Chao, Dawn Dellefave and Bill Srmack of USDA-ARS, Plant Genetic Resources Unit for their assistance in collecting tissue samples from the USDA-ARS Geneva *Vitis* Clonal Repository. USDA-ARS is an equal opportunity provider and employer. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. This project was funded by the United States Department of Agriculture, Agricultural Research Service, CRIS Project Number 1910-21000-020-00D.

Conflict of interest The authors declare that they have no conflict of interest.

References

- Anderson DW, Julian EA, Kepner RE, Webb AD (1970) Chromatographic investigation of anthocyanin pigments in *Vitis cinerea*. Phytochemistry 9:1569–1578
- Balík J, Kumšta M, Rop O (2013) Comparison of anthocyanins present in grapes of *Vitis vinifera* L. varieties and interspecific hybrids grown in the Czech Republic. Chem Pap 67:1285–1292
- Ballinger WE, Maness EP, Nesbitt WB, Carroll DE (1973) Anthocyanins of black grapes of 10 clones of *Vitis rotundifolia*, Michx. J Food Sci 38:909–910
- Bishop PD, Nagel CW (1984) Characterization of the condensation product of malvidin 3,5-diglucoside and catechin. J Agr Food Chem 32:1022–1026
- De la Cruz AA, Hilbert G, Riviere C, Mengin V, Ollat N, Bordenave L, Decroocq S, Delaunay JC, Delrot S, Merillon JM, Monti JP, Gomes E, Richard T (2012) Anthocyanin identification and composition of wild *Vitis* spp. accessions by using LC-MS and LC-NMR. Anal Chim Acta 732:145–152

- De Rosso M, Tonidandel L, Larcher R, Nicolini G, Ruggeri V, Dalla Vedova A, De Marchi F, Gardiman M, Flamini R (2012) Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Anal Chim Acta 732:120–129
- Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15
- Eibach R, Töpher R (2003) Success in resistance breeding: "REGENT" and its steps into the market. Acta Hort (ISHS) 603:687–691
- Flamini R, Tomasi D (2000) The anthocyanin content in berries of the hybrid grape cultivars Clinton and Isabella. Vitis 39:79–81
- Ford CM, Boss PK, Hoj PB (1998) Cloning and characterization of *Vitis vinifera* UDP-glucose : flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224–9233
- Garcia-Viguera C, Bridle P (1999) Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid. Food Chem 64:21–26
- Hausmann L, Neumann K, Eibach R, Zyprian E, Töpfer R (2009) Development of a molecular marker for an anthocyanin 5-O-glucosyl transferase homologous gene of Vitis ssp. correlated with anthocyanin 3,5-diglucoside formation in berry skin. Acta Hort (ISHS) 827:457–460
- Hausmann L, Eibach R, Toepfer R (2010) Alleles of anthocyanin 5-glucosyltransferase of *Vitis vinifera* are non-functional. Austr J Grape Wine Res 16(Suppl 1):A15
- Huang ZL, Wang BW, Williams P, Pace RD (2009) Identification of anthocyanins in muscadine grapes with HPLC-ESI-MS. Lwt-Food Sci Technol 42:819–824
- Janvary L, Hoffmann T, Pfeiffer J, Hausmann L, Topfer R, Fischer TC, Schwab W (2009) A double mutation in the anthocyanin 5-O-glucosyltransferase gene disrupts enzymatic activity in Vitis vinifera L. J Agr Food Chem 57:3512–3518
- Kim M, Yoon SH, Jung M, Choe E (2010) Stability of meoru (*Vitis coignetiea*) anthocyanins under photochemically produced singlet oxygen by riboflavin. New Biotechnol 27:435–439
- Li Y, Ma R, Xu Z, Wang J, Chen T, Chen F, Wang Z (2013) Identification and quantification of anthocyanins in Kyoho grape juicemaking pomace, Cabernet Sauvignon grape winemaking pomace and their fresh skin. J Sci Food Agric 93:1404–1411
- Liang ZC, Owens CL, Zhong GY, Cheng LL (2011) Polyphenolic profiles detected in the ripe berries of *Vitis vinifera* germplasm. Food Chem 129:940–950
- Liang ZC, Yang YZ, Cheng LL, Zhong GY (2012) Polyphenolic composition and content in the ripe berries of wild *Vitis* species. Food Chem 132:730–738
- Liang ZC, Yang YZ, Cheng LL, Zhong GY (2013) Characterization of polyphenolic metabolites in grape hybrids. Vitis 52:51–59
- Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (*Vitis vinifera L.*) by combining a re-sequencing approach and SNPlex technology. BMC Genom 8:424
- Mazza G (1995) Anthocyanins in grapes and grape products. Crit Rev Food Sci 35:341–371
- Mazza G, Brouillard R (1987) Color stability and structural transformations of cyanidin 3,5-diglucoside and four 3-deoxyanthocyanins in aqueous solutions. J Agr Food Chem 35:422–426
- McGovern PE (2003) Ancient wine: the search for the origins of viniculture. Princeton University Press, Princeton
- Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, Prins B, Reynolds A, Chia JM, Ware D, Bustamante CD, Buckler ES (2011) Genetic structure and domestication history of the grape. Proc Natl Acad Sci USA 108:3530–3535
- Okamoto G (2007) Poor berry set in tetraploid grapes-causes and improvement of vineyard practices. J ASEV Jpn 18:94–106

- Picariello G, Ferranti P, Chianese L, Addeo F (2012) Differentiation of *Vitis vinifera* L. and hybrid red grapes by matrix-assisted laser desorption/ionization mass spectrometry analysis of berry skin anthocyanins. J Agr Food Chem 60:4559–4566
- Picariello G, Ferranti P, Garro G, Manganiello G, Chianese L, Coppola R, Addeo F (2014) Profiling of anthocyanins for the taxonomic assessment of ancient purebred V. vinifera red grape varieties. Food Chem 146:15–22
- Revilla E, Carrasco D, Benito A, Arroyo-Garcia R (2010) Anthocyanin composition of several wild grape accessions. Am J Enol Viticult 61:536–543
- Riahi L, Zoghlami N, Dereeper A, Laucou V, Mliki A, This P (2013) Single nucleotide polymorphism and haplotype diversity of the gene NAC4 in grapevine. Ind Crop Prod 43:718–724
- Robinson WB, Weirs LD, Bertino JJ, Mattick LR (1966) The relation of anthocyanin composition to color stability of New York state wines. Am J Enol Vitic 17:178–184
- Sandhu AK, Gu LW (2010) Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of *Vitis rotundifolia* (Muscadine grapes) as determined by HPLC-DAD-ESI-MSⁿ. J Agr Food Chem 58:4681–4692
- Sims CA, Morris JR (1985) A comparison of the color components and color stability of red wine from Noble and Cabernet Sauvignon at various pH levels. Am J Enol Viticult 36:181–184
- Sims CA, Morris JR (1986) Effects of acetaldehyde and tannins on the color and chemical age of red muscadine (*Vitis rotundifolia*) wine. Am J Enol Viticult 37:163–165
- Templeton AR, Crandall KA, Sing CF (1992) A cladistic-analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA-sequence data.III. cladogram estimation. Genetics 132:619–633
- This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511–519
- Vanburen JP, Bertino JJ, Robinson WB (1968) Stability of wine anthocyanins on exposure to heat and light. Am J Enol Viticult 19:147–154
- Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS ONE 2:e1326
- Wang J, De Luca V (2005) The biosynthesis and regulation of biosynthesis of Concord grape fruit esters, including 'foxy' methylanthranilate. Plant J 44:606–619
- Wu X, Prior RL (2005) Systematic identification and characterization of anthocyanins by HPLC-ESI-MS/MS in common foods in the United States: fruits and berries. J Agr Food Chem 53:2589–2599
- Yamazaki M, Gong Z, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Saito K (1999) Molecular cloning and biochemical characterization of a novel anthocyanin 5-O-glucosyltransferase by mRNA differential display for plant forms regarding anthocyanin. J Biol Chem 274:7405–7411
- Yamazaki M, Yamagishi E, Gong ZZ, Fukuchi-Mizutani M, Fukui Y, Tanaka Y, Kusumi T, Yamaguchi M, Saito K (2002) Two flavonoid glucosyltransferases from *Petunia hybrida*: molecular cloning, biochemical properties and developmentally regulated expression. Plant Mol Biol 48:401–411
- You Q, Chen F, Wang X, Sharp JL, You YR (2012) Analysis of phenolic composition of Noble muscadine (*Vitis rotundifolia*) by HPLC-MS and the relationship to its antioxidant capacity. J Food Sci 77:C1115–C1123
- Zhao Q, Duan CQ, Wang J (2010) Anthocyanins profile of grape berries of *Vitis amurensis*, its hybrids and their wines. Int J Mol Sci 11:2212–2228
- Zhu L, Zhang YL, Lu J (2012) Phenolic contents and compositions in skins of red wine grape cultivars among various genetic backgrounds and originations. Int J Mol Sci 13:3492–3510